EN

学术活动

当前位置: 首页 > 科学研究 > 学术活动 > 正文

【工程管理论坛】中国科学技术大学朱宁教授讲座通知

来源: | 发布时间:2025-10-14| 点击:

北航经管学院工程管理论坛系列讲座

2025年第6期,总第59期)


讲座题目Entropic-based robust vehicle rental revenue management with substitution and repositioning

讲座时间2025.10.20(星期9:30-10:30

讲座地点 新主楼A1148

讲座嘉宾:朱宁,中国科学技术大学管理学院、科技商学院教授

主持人刘鹏 副教授


讲座嘉宾简介:

朱宁,中国科学技术大学管理学院教授。主要研究领域是交通系统运营管理与优化、鲁棒优化、混合整数优化等。发表论文50余篇,其中部分论文发表于交通管理与管理科学领域高水平期刊,如TSTR-Part A/B(9)/C/EM&SOMPOMSIJOCEJORJournal of Scheduling、管理科学学报、系统工程理论与实践等。主持国家自然科学基金项目5项(包括青B项目,面上项目等),教育部项目2项。获第十四届计算交通科学国际研讨会优秀论文、第十六届华人学者管理科学与工程国际年会管理科学实践奖一等奖等奖项。担任Transportation Research Part B客座编辑、交通运输工程与信息学报副主编、管理科学与工程学会第二届交通运输管理分委会委员。

讲座摘要:

This paper investigates the practical inventory management challenges faced by the vehicle rental industry, which arise from the random arrival of orders and lead times before demand occurs, as well as the uncertainty and dynamic nature of cancellations and rental durations after demand is realized. To ensure on-demand rental services while mitigating the impact of randomness on inventory stability, the industry usually employs substitution service and inventory repositioning. We extend the methodology of Bandi et al. (2018) and propose a tractable robust approach featuring an entropic risk measure. This approach jointly optimizes substitution service and inventory repositioning, addressing the maximization of revenue under varied risk-aversion preferences while safeguarding against multiple uncertainties and misspecification. Numerous numerical experiments constructed by real-world data exhibit that our model achieves 16% higher average weekly revenues compared to the expectation optimization benchmark model. Compared to the sample average approximation model, which disregards the variant nature of probability transitions, the model can achieve higher revenue with fewer vehicle inventories. Besides, we also find that further restricting substitution to implement only when the order is placed can reduce the conservatism of our model, further improving the out-of-sample revenue and enhancing the interpretability of the substitution service.